
1

Chapter 4: Dynamic Programming

• Overview of a collection of classical solution
methods for MDPs known as dynamic
programming "DP#

• Show how DP can be used to compute value
functions, and hence, optimal policies

• Discuss e$ciency and utility of DP

Objectives of this chapter:

1

Policy Evaluation: for a given policy !, compute the
 state!value function V

!

2

Policy Evaluation

State - value function for policy ! :

V
!
(s) = E! R

t
s
t

= s{ } = E! " k
r
t+k +1 s

t
= s

k =0

#

$
%
&
'

(
)
*

Bellman equation for V
!

:

V
!
(s) = ! (s, a) P

s " s

a
R

s " s

a
+ #V

!
(" s)[]

" s

$
a

$

— a system of S simultaneous linear equations

Recall:

2

3

Iterative Methods

V
0
! V

1
!L!V

k
! V

k+1 !L! V
"

V
k +1 (s)! " (s, a) P

s # s

a
R

s # s

a
+ $V

k
(# s)[]

s

%
a

%

a %sweep&

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

3

4

Iterative Policy Evaluation

4

5

A Small Gridworld

• An undiscounted episodic task

• Nonterminal states: 1, 2, . . ., 14;

• One terminal state "shown twice as shaded squares#

• Actions that would take agent o' the grid leave state
unchanged

• Reward is (1 until the terminal state is reached

5

6

Iterative Policy Eval for the Small Gridworld

! = random (uniform) action choices

6

7

Policy Improvement

Suppose we have computed for a deterministic policy !.V
!

For a given state s,
would it be better to do an action ? a ! "(s)

 Q! (s, a) = E! r
t +1

+ "V !(s
t +1

) s
t
= s, a

t
= a{ }

= P
s # s

a

s

$ R
s # s

a +" V
!
(# s)[]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if

 Q! (s, a) > V ! (s)

7

8

Policy Improvement Cont.

! " (s) = argmax
a

Q
"
(s, a)

= argmax
a

P
s ! s

a

! s

R
s ! s

a + $V " (! s)[]

Do this for all states to get a new policy ! " that is

greedy with respect to V " :

Then V
! "
V

"

8

9

Policy Improvement Cont.

What if V ! " = V
" ?

i.e., for all s #S, V ! " (s) = max
a

P
s ! s

a

! s

$ R
s ! s

a +% V
" (! s)[] ?

But this is the Bellman Optimality Equation.

So V ! " = V
and both " and ! " are optimal policies.

9

10

Policy Iteration

!
0
"V

!
0 "!

1
" V

!
1 "L!

*
"V

*
"!

*

 policy evaluation policy improvement
%greedi+cation&

10

11

Policy Iteration

11

Jack)s Car Rental

• *10 for each car rented "must be available when request
received

• Two locations, maximum of 20 cars at each

• Cars returned and requested randomly

• Poisson distribution, n returns/requests with prob

• 1st location: average requests = 3, average returns = 2

• 2nd location: average requests = 4, average returns = 2

• Can move up to 5 cars between locations overnight

• States, Actions, Rewards?

• Transition probabilities?

•

!

"

n!
e
#"

12
12

Jack)s Car Rental

13
13

Jack)s CR Exercise

• Suppose the +rst care moved is free

• From 1st to 2nd location

• Because an employee travels that way anyway "by bus#

• Suppose only 10 cars can be parked for free at each
location

• More than 10 cost *4 for using an extra parking lot

• Such arbitrary nonlinearities are common in real problems

14
14

15

Value Iteration

V
k +1 (s)! " (s, a) P

s # s

a
R

s # s

a
+ $V

k
(# s)[]

s

%
a

%

Recall the full policy evaluation backup:

V
k +1 (s)! max

a

P
s " s

a
R

s " s

a
+ #V

k
(" s)[]

" s

$

Here is the full value iteration backup:

15

16

Value Iteration Cont.

16

Gambler)s Problem

• Gambler can repeatedly bet * on a coin ,ip

• Heads he wins his stake, tails he loses it

• Initial capital: *1, *2, ... , *99

• Gambler wins if his capital becomes *100; loses if it
becomes *0

• Coin is unfair

• Heads "gambler wins# with probability p = 0.4

• States, Actions, Rewards?

17
17

Gambler)s Problem Solution

18
18

Herd Management

• You are a consultant to a farmer managing a herd of cows

• Herd consists of 5 kinds of cows:

• Young

• Milking

• Breeding

• Old

• Sick

• Number of each kind is the State

• Number sold of each kind is the Action

• Cows transition from one kind to another

• Young cows can be born

19
19

20

Asynchronous DP
• All the DP methods described so far require exhaustive

sweeps of the entire state set.

• Asynchronous DP does not use sweeps. Instead it works
like this:

• Repeat until convergence criterion is met:

! Pick a state at random and apply the appropriate
backup

• Still need lots of computation, but does not get locked
into hopelessly long sweeps

• Can you select states to backup intelligently? YES: an
agent)s experience can act as a guide.

20

21

Generalized Policy Iteration

Generalized Policy Iteration "GPI#:
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

21

22

E$ciency of DP
• To +nd an optimal policy is polynomial in the

number of states…

• BUT, the number of states is often astronomical,
e.g., often growing exponentially with the number of
state variables "what Bellman called %the curse of
dimensionality&#.

• In practice, classical DP can be applied to problems
with a few millions of states.

• Asynchronous DP can be applied to larger problems,
and appropriate for parallel computation.

• It is surprisingly easy to come up with MDPs for
which DP methods are not practical.

22

23

Summary

• Policy evaluation: backups without a max

• Policy improvement: form a greedy policy, if only locally

• Policy iteration: alternate the above two processes

• Value iteration: backups with a max

• Full backups "to be contrasted later with sample backups#

• Generalized Policy Iteration "GPI#

• Asynchronous DP: a way to avoid exhaustive sweeps

• Bootstrapping: updating estimates based on other
estimates

23

