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Chapter 4: Dynamic Programming

• Overview of a collection of classical solution 
methods for MDPs known as dynamic 
programming "DP#

• Show how DP can be used to compute value 
functions, and hence, optimal policies

• Discuss e$ciency and utility of DP

Objectives of this chapter: 
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Policy Evaluation: for a given policy !, compute the 
           state!value function  V
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Policy Evaluation

State - value function for policy ! :
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Bellman equation for V
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— a system of S  simultaneous linear equations

Recall:
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Iterative Methods
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a %sweep&

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:
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Iterative Policy Evaluation
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A Small Gridworld

• An undiscounted episodic task

• Nonterminal states: 1, 2, . . ., 14; 

• One terminal state "shown twice as shaded squares#

• Actions that would take agent o' the grid leave state 
unchanged

• Reward is (1 until the terminal state is reached
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Iterative Policy Eval for the Small Gridworld

! =  random (uniform) action choices
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Policy Improvement

Suppose we have computed       for a deterministic policy !.V
!

For a given state s, 
would it be better to do an action                 ? a ! "(s)
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The value of doing a in state s is :

It is better to switch to action a for state s if and only if

                            Q! (s, a) > V ! (s)
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Policy Improvement Cont.
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Do this for all states to get a new policy ! "  that is 

greedy  with respect to V " :
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Policy Improvement Cont.

What if V ! " = V
"  ?

i.e.,    for all s #S,    V ! " (s) = max
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But this is the Bellman Optimality Equation.

So V ! " = V
# and both " and ! "  are optimal policies.
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Policy Iteration
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Policy Iteration
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Jack)s Car Rental

• *10 for each car rented "must be available when request 
received

• Two locations, maximum of 20 cars at each

• Cars returned and requested randomly

• Poisson distribution, n returns/requests with prob 

• 1st location: average requests = 3, average returns = 2

• 2nd location: average requests = 4, average returns = 2

• Can move up to 5 cars between locations overnight

• States, Actions, Rewards?

• Transition probabilities?
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Jack)s Car Rental
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Jack)s CR Exercise

• Suppose the +rst care moved is free

• From 1st to 2nd location

• Because an employee travels that way anyway "by bus#

• Suppose only 10 cars can be parked for free at each 
location

• More than 10 cost *4 for using an extra parking lot

• Such arbitrary nonlinearities are common in real problems
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Value Iteration
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Recall the full policy evaluation backup:
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Here is the full value iteration backup:
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Value Iteration Cont.
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Gambler)s Problem

• Gambler can repeatedly bet * on a coin ,ip

• Heads he wins his stake, tails he loses it

• Initial capital: *1, *2, ... , *99

• Gambler wins if his capital becomes *100; loses if it 
becomes *0

• Coin is unfair

• Heads "gambler wins# with probability p = 0.4

• States, Actions, Rewards?
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Gambler)s Problem Solution
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Herd Management

• You are a consultant to a farmer managing a herd of cows

• Herd consists of 5 kinds of cows:

• Young

• Milking

• Breeding

• Old 

• Sick

• Number of each kind is the State

• Number sold of each kind is the Action

• Cows transition from one kind to another

• Young cows can be born
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Asynchronous DP
• All the DP methods described so far require exhaustive 

sweeps of the entire state set.

• Asynchronous DP does not use sweeps. Instead it works 
like this:

• Repeat until convergence criterion is met:

! Pick a state at random and apply the appropriate 
backup

• Still need lots of computation, but does not get locked 
into hopelessly long sweeps

• Can you select states to backup intelligently? YES: an 
agent)s experience can act as a guide.
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Generalized Policy Iteration

Generalized Policy Iteration  "GPI#:  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

A geometric metaphor for
convergence of GPI: 
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E$ciency of DP
• To +nd an optimal policy is polynomial in the 

number of states…

• BUT, the number of states is often astronomical, 
e.g., often growing exponentially with the number of 
state variables "what Bellman called %the curse of 
dimensionality&#.

• In practice, classical DP can be applied to problems 
with a few millions of states.

• Asynchronous DP can be applied to larger problems, 
and appropriate for parallel computation.

• It is surprisingly easy to come up with MDPs for 
which DP methods are not practical.   
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Summary

• Policy evaluation: backups without a max

• Policy improvement: form a greedy policy, if only locally

• Policy iteration: alternate the above two processes

• Value iteration: backups with a max

• Full backups "to be contrasted later with sample backups#

• Generalized Policy Iteration "GPI#

• Asynchronous DP: a way to avoid exhaustive sweeps

• Bootstrapping: updating estimates based on other 
estimates
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