Chapter 4: Dynamic Programming

Objectives of this chapter:

- Overview of a collection of classical solution methods for MDPs known as dynamic programming (DP)
- Show how DP can be used to compute value functions, and hence, optimal policies
- Discuss efficiency and utility of DP

Policy Evaluation Policy Evaluation: for a given policy π , compute the state-value function V^{π}

Recall: State - value function for policy π :

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \mid s_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right\}$$

Bellman equation for V^{π} : $V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$

- a system of |S| simultaneous linear equations

3

Iterative Policy Evaluation

Input π , the policy to be evaluated Initialize V(s) = 0, for all $s \in S^+$ Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s') \right]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number) Output $V \approx V^{\pi}$

4

Policy Improvement

Suppose we have computed V^{π} for a deterministic policy π .

For a given state s, would it be better to do an action $a \neq \pi(s)$?

The value of doing a in state s is :

$$Q^{\pi}(s, a) = E_{\pi} \left\{ r_{t+1} + \gamma V^{\pi}(s_{t+1}) \middle| s_{t} = s, a_{t} = a \right\}$$
$$= \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

It is better to switch to action a for state s if and only if

$$Q^{\pi}(s,a) > V^{\pi}(s)$$

7

Policy Improvement Cont.

Do this for all states to get a new policy π' that is greedy with respect to V^{π} :

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$
$$= \arg\max_{a} \sum_{s'} P^{a}_{s'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$
Then $V^{\pi'} \ge V^{\pi}$

8

Policy Improvement Cont. What if $V^{\pi'} = V^{\pi}$? i.e., for all $s \in S$, $V^{\pi'}(s) = \max_{a} \sum_{s'} P^{a}_{ss'} [R^{a}_{ss'} + \gamma V^{\pi}(s')]$? But this is the Bellman Optimality Equation. So $V^{\pi'} = V^*$ and both π and π' are optimal policies.

Jack's Car Rental

- \$10 for each car rented (must be available when request received
- Two locations, maximum of 20 cars at each
- Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{\lambda}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 2
 - 2nd location: average requests = 4, average returns = 2

12

- Can move up to 5 cars between locations overnight
- States, Actions, Rewards?
- Transition probabilities?

Value Iteration

Recall the **full policy evaluation backup**:

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} P^a_{ss'} \Big[R^a_{ss'} + \gamma V_k(s') \Big]$$

Here is the **full value iteration backup**:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P^a_{ss'} \Big[R^a_{ss'} + \gamma V_k(s') \Big]$$

15

Value Iteration Cont.

Initialize V arbitrarily, e.g., V(s) = 0, for all $s \in S^+$ Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number) Output a deterministic policy, π , such that $\pi(s) = \arg \max_a \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma V(s')]$

16

15

- Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- Initial capital: \$1, \$2, ..., \$99
- Gambler wins if his capital becomes \$100; loses if it becomes \$0
- Coin is unfair
 - Heads (gambler wins) with probability p = 0.4

17

• States, Actions, Rewards?

Herd Management

- You are a consultant to a farmer managing a herd of cows
- Herd consists of 5 kinds of cows:
 - Young
 - Milking
 - Breeding
 - Old
 - Sick
- Number of each kind is the State
- Number sold of each kind is the Action
- Cows transition from one kind to another
- Young cows can be born

Gambler's Problem Solution

Asynchronous DP

- All the DP methods described so far require exhaustive sweeps of the entire state set.
- Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

20

Generalized Policy Iteration

Generalized Policy Iteration (GPI):

any interaction of policy evaluation and policy improvement, independent of their granularity.

Efficiency of DP

- To find an optimal policy is polynomial in the number of states...
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- In practice, classical DP can be applied to problems with a few millions of states.
- Asynchronous DP can be applied to larger problems, and appropriate for parallel computation.

22

 It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- Policy evaluation: backups without a max
- Policy improvement: form a greedy policy, if only locally
- Policy iteration: alternate the above two processes
- Value iteration: backups with a max
- Full backups (to be contrasted later with sample backups)
- Generalized Policy Iteration (GPI)
- Asynchronous DP: a way to avoid exhaustive sweeps
- **Bootstrapping**: updating estimates based on other estimates