Chapter 4: Dynamic Programming

Objectives of this chapter:

e Overview of a collection of classical solution
methods for MDPs known as dynamic
programming (DP)

e Show how DP can be used to compute value
functions, and hence, optimal policies

e Discuss efficiency and utility of DP

Iterative Methods

V= Vi Yy e VT

a “sweep” )

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

Vi 0= Sts,0) 3 B[R + 7467

Policy Evaluation

Policy Evaluation: for a given policy 7, compute the
state-value function V"

Recall:  State - value function for policyr :

Vi(s)=E{R |5 =s}= E{Ew
k=0

s,=s}

Bellman equation for V" :
V()= Sa.a)y PR + V()]

— asystem of |S| simultaneous linear equations

Iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize V' (s) = 0. for all s € §*

Repeat
A0
For each s € &:
v +— Vi(s)

Vis) «— >, ml(s.a) 3, PL[RE, + V()]
A — max(A, |[v—V(s)])

until A < # (a small positive number)

Output V = V7




A Small Gridworld
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¢ An undiscounted episodic task
e Nonterminal states: 1,2,.. ., 14;

¢ One terminal state (shown twice as shaded squares)

. ég'cc}?arlllsgglaat would take agent off the grid leave state

e Reward is —1 until the terminal state is reached
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Policy Improvement

Suppose we have computed V” for a deterministic policy .

For a given state s,
would it be better to do an action a = J(s) ?

The value of doing a in state s is:
g (s,a)=E, {rM + )/V”(s,+l)|s, =s,a, = a}
= SRR 7 V0]

It is better to switch to action a for state s if and only if
O (s,a)>V7(s)
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Iterative Policy Eval for the Small Gridworld

Vi for the Greedy Policy
Random Policy wrt Vg

= random (uniform) action choices
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Policy Improvement Cont.

Do this for all states to get a new policy x'that is

greedy with respectto V7 :
7'(s) = argmax Q" (s, a)
= argmax EP::[RZ +y V7 (s’)]

Then V™ = V"



Policy Improvement Cont.

What if V™' = V™ ?
ie, forall sES, VT (s)=max 2 P [st, +y V(s ')] ?

But this is the Bellman Optimality Equation.

So V" = V* and both srand 5’ are optimal policies.

Policy Iteration

n, >V sg >V —>..m >V —>g

policy evaluation  policy improvement
“greedification”

I0

Policy Iteration

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € &

2. Policy Evaluation

Repeat
A0
For each s € §:
v V(s)

Vis) = Ly PLY R + V()
A — max(A, v — V(s)])
until A < 0 (a small positive number)

3. Policy Improvement
policy-stable « true
For each s € §:
b 7(s)
m(s) «— argmax, y_, P, [R’jh, +1 \.-'[’.9’)]
It b # w(s), then policy-stable — false
It policy-stable, then stop; else go to 2
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Jack’s Car Rental

$10 for gach car rented (must be available when request
receive

Two locations, maximum of 20 cars at each
Cars returned and requested randomly
e Poisson distribution, n returns/requests with prob ”&e
e Ist location: average requests = 3, average returns = 2
e 2nd location: average requests = 4, average returns = 2
Can move up to § cars between locations overnight
States, Actions, Rewards?

Transition probabilities?
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Jack’s Car Rental

20

#Cars at first location

==t
Y #Cars at second location

Value Iteration

Recall the full policy evaluation backup:

Via )< St PR, + %)

Here is the full value iteration backup:

Vi 0= max 3 PR +7%,6)]

15

Jack’s CR Exercise

e Suppose the first care moved is free
e From Ist to 2nd location
e Because an employee travels that way anyway (by bus)

e Suppose only 10 cars can be parked for free at each
location

e More than 10 cost $4 for using an extra parking lot

e Such arbitrary nonlinearities are common in real problems
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Value Iteration Cont.
Initialize V" arbitrarily, e.g..V'(s) = 0, for all s € St
Repeat
A0
For each s € §:
v V(s)
V(s) — max, X, Pe, [Rey + V()]
A — max(A, v —V(s))
until A < @ (a small positive number)
Output a deterministic policy, 7, such that
m(s) = argmax, y_ . P2, [’Rfﬁg +V( s’}]
16
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Gambler’s Problem

e Gambler can repeatedly bet $ on a coin flip
e Heads he wins his stake, tails he loses it
e Initial capital: $1, $2, ..., $99

e Gambler wins if his capital becomes $100; loses if it
becomes $0

e Coin is unfair
¢ Heads (gambler wins) with probability p = 0.4

o States, Actions, Rewards?
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Herd Management

* You are a consultant to a farmer managing a herd of cows

¢ Herd consists of § kinds of cows:
¢ Young
e Milking
e Breeding
e Old
e Sick
e Number of each kind is the State
e Number sold of each kind is the Action
e Cows transition from one kind to another
¢ Young cows can be born
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(GGambler’s Problem Solution
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Asynchronous DP

o All the DP methods described so far require exhaustive
sweeps of the entire state set.

e Asynchronous DP does not use sweeps. Instead it works
like this:

e Repeat until convergence criterion is met:

- Pick a state at random and apply the appropriate
backup

e Still need lots of computation, but does not get locked
into hopelessly long sweeps

e Can you select states to backup intelligently? YES: an
agent’s experience can act as a guide.
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Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
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, convergence of GPI:
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Summary

e Policy evaluation: backups without a max

e Policy improvement: form a greedy policy, if only locally
e Policy iteration: alternate the above two processes

e Value iteration: backups with a max

e Full backups (to be contrasted later with sample backups)
e Generalized Policy Iteration (GPI)

e Asynchronous DP: a way to avoid exhaustive sweeps

* Bootstrapping: updating estimates based on other
estimates

23
23

Efficiency of DP

e To find an optimal policy is polynomial in the
number of states...

e BUT, the number of states is often astronomical,
e.g., often growing exponentially with the number of
state variables (what Bellman called “the curse of
dimensionality”).

e In practice, classical DP can be applied to problems
with a few millions of states.

e Asynchronous DP can be applied to larger problems,
and appropriate for parallel computation.

e It is surprisingly easy to come up with MDPs for
which DP methods are not practical.
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